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A three-dimensional analysis of cavity antennas is presented. The analysis is based on the 
finite difference method with a successive overrelaxation convergence scheme. This method 
permits the calculation of resonance frequencies and corresponding electric and magnetic 
fields of eigenmodes in cavity antennas with arbitrary shapes. ,c 1988 Academic Press, Inc. 

1. INTRODUCTION 

Cavity antennas have been used for various purposes, such as communication 
systems, for a long time. Recently, the usefulness of cavity antennas has aroused the 
interest of researchers in the plasma radio-frequency (rf) heating area, especially in 
the ion cyclotron resonance frequency (ICRF) range [ 11. Ion cyclotron resonance 
heating (ICRH) has been successfully used for heating experiments in tokamaks 
and has been chosen to demonstrate ignition heating for next-generation tokamaks, 
such as the Tokamak Fusion Test Reactor (TFTR), the Joint European Torus 
(JET), and Doublet III. A carefully designed and fully tested resonant cavity 
antenna for these tokamaks is desirable. The Radio-Frequency Test Facility 
(RFTF) at the Oak Ridge National Laboratory (ORNL) is dedicated to this 
mission. 

In designing a cavity antenna, it is necessary to understand its characteristic 
properties, such as resonant frequency, field components, impedance, etc. For a 
simple cavity, we can obtain these parameters by using the equivalent circuit 
method [2] or the variational principle method [3] or even by solving Maxwell’s 
equations with analytical methods. However, these methods are very difficult or 
even impossible to apply to a complicated cavity such as those that are of interest 
for rf heating. Hence, we need to develop a three-dimensional (3D) analysis to 
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obtain a numerical solution of Maxwell’s equations with complicated boundary 
conditions. 

Numerical techniques have been developed to solve Maxwell’s equations for 
boundaries of arbitrary shape. These techniques have a wide range of applications; 
examples include accelerator physics and the electromagnetic radiation and scatter- 
ing problems [4]. Most of the techniques are designed to calculate the e’rec- 
tromagnetic field from the sources, either charge density or current density. A good 
method for finding the resonance frequency and fields of eigenmodes is given by 
Hara et al. [4]. However, its accuracy becomes poor for very complicated boun- 
dary conditions, because the mesh size is limited by their finite element method. In 
general, the rf heating problem consists of analyzing the electromagnetic waves that 
couple a large number of eigenmodes together. Hence, finding an algorithm that 
solves for a large number of eigenmodes simultaneously and uses a reasonable 
amount of computer memory is very important for plasma heating theory. 

Numerical techniques [S] that use the finite difference method combined with a 
relaxation convergence scheme to solve the wave equations for eigenvalue problems 
in a two-dimensional (2D) analysis have received considerable attention. In this 
work, we further investigate this technique in 3D cavities with boundaries of 
arbitrary shape. A finite difference analysis 3D Poisson equation [6] was developed 
by the authors for use in designing and conducting neutral beam experiments. 
We have extended this analysis to the 3D wave equation Our analysis has severa! 
basic merits First, a finite difference method [lo] is used with a successive 
overrelaxation (SOR) convergence scheme and a method of treating boundaries 
that allows the cavity to have an arbitrary shape. Second, because of the SOR 
scheme, we need not find the inverse matrix to obtain the eigenvalue, which reduces 
the storage requirements. Third, either Dirichlet or Neumann boundary conditions 
are easily considered. Hence, more mesh points can be adopted for complicated 
boundary data or increased accuracy. Fourth, although our analysis is limited to 
the Cartesian coordinate system at present, a new scheme for treating the oblique 
boundary has been developed to allow cavities of arbitrary shape to exist in cur 
problems. However, one of the disadvantages of SOR is the existence of 
convergence, and the convergence rates are strongly dependent on the chosen SOR 
factor. The third point implies that we can solve the wave equation in terms of 
components as well as E components. Examining the Helmholtz magnetic field 
equation is important because it produces the lowest resonance frequency {see 
Section II), which is of considerable interest in ICRF plasma heating, where 
low-frequency launchers of compact dimensions are desirable. 

The purpose of this paper is to demonstrate the analysis and its validity by 
calculating the eigenfrequencies and field components of a finite rectangular 
waveguide and other waveguides. The applications of this algorithm to rf heating 
will be given in a separate paper. The structure of the remainder of this paper is as 
follows. Jn Section II, we briefly describe the wave equations, boundary conditions, 
and possible constraining conditions. In Section III, we describe the subject 
analysis. Results for specific waveguides are presented in Section IV. We summarize 
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our conclusions in Section V. Appendix A gives the explicit form of the expansion 
coefficients used in Section II, and Appendix B gives a detailed discussion of the 
oblique boundary condition. 

II. WAVE EQUATIONS IN VACUUM WITH PERFECTLY CONDUCTING WALLS 

Since we consider the wave equations in vacuum, Maxwell’s equations for the 
sinusoidal time-dependent ePi”’ fields, E and H, are 

V.H=O, (la) 

V.H=O, (lb) 

V x E = ip,oH, (lc) 

V x H = -iq,oE, (Id) 

where p0 and c0 are the permeability and dielectric constant in a vacuum. By com- 
bining the two curl equations and making use of the vanishing divergences, we find 
that both E and H satisfy 

(v+Pow~2) 
E il H 

= 0. 

Boundary conditions on perfectly conducting walls are 

nxE=O. 

n.H=O, 

@a) 

(3b) 

where n is a unit vector outward normal to the surface of the boundary S. Equation 
(3) may be stated as follows: the boundary condition on E is that E,, vanish at the 
surface, and the boundary condition on H is that 8H,,/dn vanish at the surface, 
where E,, and H,, are the components of E and H, respectively, parallel to the 
boundary. 

Equations (2) and (3) constitute the well-known eigenvalue problem. For the 
perfectly conducting cavity, all components of E and H are real. Equation (3) can 
be solved independently for three components. Since the boundary conditions on E,, 
and Hi, are different, the corresponding eigenvalues will, in general, be different. For 
a simple eigenmode, there are three distinct categories of waves: transverse 
magnetic (TM j waves arise if the boundary condition is E,, = 0, transverse electric 
(TE) waves arise if the boundary condition is dH,,/&r = 0. and transverse elec- 
tromagnetic (TEM) waves arise if the boundary condition is E,, = 0 and H,, = 0. 
These three waves-TE, TM, and TEM~--constitute a complete set of fields for 
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describing a cavity of arbitrary shape. In general, however, even for arbitrarlj 
shapes, analysis of an antenna requires only the study of some dominant modes 
The lowest nontrivial eigenfrequency of the T mode is lower than that of the TM 
mode. For rf heating, a low-frequency, compact, high-power antenna is needed 
because of the typical port sizes and magnetic fields on tokamaks. Using plasma 
diagnostic techniques, the magnetic field can be directly measured by probe, but the 
absolute value of the electric field cannot be. Hence, solving Eq. (2) in terms of is 
more practical, though it is sometimes more difficult. 

For some eigenmodes, the eigenfunctions (E or H) are degenerate. When tbe 
eigenfunctions are degenerate, we impose conditions of constraint to remove the 
degeneracy. These constraint conditions could simply use Eq. (la) or Eq. (lb). 

III. DESCRIPTION OF ANALYSIS 

For simplicity, we discuss our numerical method in Cartesian coordinates. Thus, 
Eq. (2) can be rewritten in three scalar equations for H,, N,., and N,: 

where k’ = POE,,&. Similar equations can be obtained for E if we replace H by E in 
Eq. (4). 

Equation (4) is similar to the Poisson equation with a linearized source term. We 
have modified the validated analysis described in Ref. [6] (which describes some of 
the details of this analysis). Here we expand the field (E or H) and its partial 
derivatives in Eq. (4) at node 0 (see Fig. 1) in terms of the fields at the node’s 
neighbor grid points (l-6) by using the first-order finite difference approximation. 
We have, for example, 

= 5 CiHzi, 
j==, 

!5) 

where Hri is the value of H, at the- ith node and C, is the expansion coefficient in 
that direction. The detailed expressions for Ci are given in Appendix A. 
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FIG. 1. The setup of nodal points and their finite difference expansion coefficients. 

Then, we iterate the calculation by SOR until the difference between the two 
sides of Eq. (5) vanishes. That is, Res = H,, - CiHZj ~0. This is defined as the 
minor iteration. During the minor iteration, k’ is kept constant. Once Hi 
(j= 1, 2, 3, and H, = H,., H, = H,., H, = H,) (or E,) is found-that is, after a com- 
pleted minor iteration-a new value of k’ can be gotten from 

(6) 

where u is an arbitrarily chosen grid point, and H, is normalized to Hi,,,, which is 
the maximum value of all Hi. A major iteration is then finished. The new k* is input 
into another minor iteration. The iteration process is completed and the eigen- 
frequency is found when the previous k2 and the latest k2 are sufficiently close. 

An alternative way to find the new k2 needs to be mentioned here, because it 
converges rapidly in most cases. We can obtain the new k’ by dividing k2 by Hi,,, 
(or E, ,,,) instead of computing from Eq. (6). Convergence is achieved when Hj max 
is close to unity. Mathematically, this corresponds to choosing the J,(u) equal to 
Hj max in Eq. (6). However, because the input Hi is close to the output H, at this 
time, this method fails if the maximum value of Hi is assigned as a constant 
boundary value where the nodes are excluded from the iteration. The algorithm is 
shown in Fig. 2. 

Convergence is critically dependent on the relaxation parameters [ 1 l] for the 
SOR method. In the major iteration, we use underrelaxation to get the new k’ of 
the mth iteration; that is, 

k;=crkf,+(l-cr)k,Z,-,, (7) 

where kf, is evaluated from Eq. (6). The underrelaxation parameter, c(, is in the 
range 0 < CI d 1. Similarly, we use overrelaxation with the relaxation parameter 
1 d fi < 2 in the minor iteration; that is, 

H;=,/3H;+(l -j?) H;-‘, (8) 
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AlJD CALCULATE COEFFICIENTS 

FIG. 2. Algorithm for Maxwell’s equations. 

where H; is the result from Eq. (5). Whether or not the iteration process converges 
at all and whether the convergence is fast or slow depend on the chosen values of cx 
and 8. We give a more detailed discussion in Section IV, Theorems on the choice of 
‘x and /? are being developed. 

B. Implementation of Boundary Conditions 

Either the Dirichlet boundary condition (E, = 0 or H,= 0) or the Neumarm 
boundary condition (dEj/dx, = 0 or dH,/L+.u, = 0) is required to solve Eq. (4). For 
example, to solve Eq. (4c), we let H, = 0 on boundary surfaces xy, SH,/?x = 0 OII 
boundary surfaces J’Z, and 8HJc7y =0 on boundary surfaces ZX, as illustrated in 
Fig. 3. 

Two types of boundaries need to be discussed here: (a) a regular boundary and 
(b) an oblique boundary. Setting up the regular Dirichlet boundary condition is 
rather simple. We let the fields equal zero (or constant) only at the nodes and keep 
them constant on all iterations. The regular Neumann boundary condition should 
be satisfied when SHJdx, = 0 at the boundary, where ,j = I, 2, 3; k = t, 2, 3; and 
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FIG. 3. Schematic representation of the cavity resonator and the boundary conditions of H,. 

xr =x, x2 = J’, and -‘c3 = z. For example, for the regular boundary illustrated in 
Fig. 4, we have 

aH I H,, II: - HX3 hf - H,,(h: - hf) 
ax .K=o= h,h,(h,+hJ)dx ’ (9) 

Equation (9) vanishes only if 11, = 12, and H,, = HX3. If we let h, = h, and H.X3 = H,, 
in Eq. (AS), we can see that only C, and C, are changed. They become 
C, = 4/1,1/i and C, = 0. That is, C, is doubled and C, vanishes. Hence, to treat the 
regular Neumann boundary condition, we need to redefine the coefhcients Ci and 
use the following rules. For a point that lies on the boundary line, Ci is set at zero 
for the direction that points outside the boundary, and the opposite Ci is doubled. 
For example, for point A, we let C, = 0 and double C, ; for point B, we let C, = 0 
and double C, ; for point C, we let C, = 0 and double C,; and for point d, we let 
C, = 0 and double C,. For points that lie on the corners, we double the two non- 
zero C,‘s that lie interior to the boundary. For example, for point a, we let 
C, = C4 = 0 and double C, and C,. The Cls for points b, c, and d need similar 
treatment. 

FIG. 4. Setting up the regular Dirichlet boundary condition. 
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We cannot expect all the boundaries to be fitted in the nodal lines. A typical case 
is shown in Fig. 5, a circle. This problem causes slight complications in the oblique 
Neumann boundary conditions. However, we have developed a new scheme [12] 
to deal with these oblique Neumann boundary conditions. The details of setting up 
the. oblique boundary condition are given in Appendix B. 

C. Imposed Conditions for Higher Eigenmodes 

The procedure described in Section II1.A can produce only the lowest mode, 
because Eq. (6) provides a bound only for the lowest eigenfrequency. It is worth 
pointing out here that the lowest eigenfrequency of the TE mode is zero, and the 
corresponding eigenfunction is an arbitrary constant. For this particular case, we 
can simply obtain the first nontrivial eigenfrequency by subtracting a constant from 
N, (or E,). This constant could be the averaged value of Hi (or E,) at each iteration. 

To obtain the nontrivial higher modes, we need to use the orthogonal properties 
of the eigenmodes [ 131, H,, . H,,, = 0 if rz # nz. Once we have determined the first 
mode, H,, we can use H”- hH, for the next stage of the iteration where 6 is 
chosen to satisfy 

H:( H” - 6H,) = 0. (1s; 

Here H: is the complex conjugate of H, and H” is the value of H at the rrth 
iteration. The second mode is then 

Hz= H”-6Hl, j1ri 

where H” is the convergent value. After the second mode has been determined, 
H” - 6H, - cH, is used for the next stage of the iteration, with 6 and c chosen to 
satisfy 

H;( H; - bH, - cH2) = 0, 

H;(H’; - 617, - Cff,) = 0. 

i 

FIG. 5. A typical irregular boundary 

.581,?5’1-11 
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At convergence, the third mode will be 

H,=H’;-bH,-cH,. (14) 

This procedure is repeated until all of the desired modes have been obtained. The 
degenerate modes can also be determined with this procedure. 

IV. EXAMPLES 

We use a rectangular cavity, a ridge waveguide, and two complicated cavities to 
examine the validity of our analysis. 

It is well known that if a, b, and c are the dimensions of a rectangular cavity 
(Fig. 6(a)) and c 3 a> 6, then the magnetic field and electric field of the TEloL 
mode (the lowest nontrivial mode) are 

(0) 

Cd) 

FIG. 6. Sample results for a resonant cavity: (a) dimensions of the cavity; (b) Hr of TE,, wave; 
(c) H, of TEol wave; (d) I?, of TEo, wave. The chained lines represent negative fields and the vector of 
field points to the inside of the paper. 
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H, = A sin T cos F, 

H,=Bcoszsinz- 
a c 

E1, = C sin y sin 5, 
a C 

H,. = E,y = E, = 0: 

where A, B, and C are constants. 
The corresponding eigenfunction is 

kLK’ 1 2. 
.r c2 

FIG. 7. The three lowest nontrivial TE modes of a rectangular cavity. obtained by the 
Gram-Schmidt method. 
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Figure 6 gives the results of our calculation with a = c = 2m and b = 1~. In this 
paper, the contours of the field are plotted for all examples. The difference between 
the value of k2 from the subject analysis ( =4.89mP’) and that from Eq. (14) 
(=n2/2mp2 ) is less than 1%. Since the analysis of Section III considers arbitrary 
boundary data, and since the analysis cannot determine that the example of a 
shoebox cavity is solvable exactly, the agreement in the lowest eigenvalue con- 
stitutes a nontrivial validation of the subject analysis. The three lowest nontrivial 
TE modes (TE,,,, Te,,,, and TE,,,) of a rectangular cavity with a = l.lm, b = lm, 
and c = 1.2m are obtained by the Gram-Schmidt orthogonalization method [ 131 
and are shown in Fig. 7. The solutions of TE,,, and TE,,, reduce to the 2D results. 
This implies that our 3D algorithm can be used for 2D problems. 

The second example considered is that of a ridged waveguide. This waveguide 
has a lower cutoff frequency and a wider band of useful frequencies than a rec- 
tangular waveguide with equivalent outside dimensions. Figure 8a shows a typical 
ridged waveguide and its lowest mode (TE,,) HZ field. Figure 8b shows the result 
for-an inlini~ely long waveguide. Infinite length is a necessary 
equivalent circuit approximation [Z]. To compare our results 

assumption for the 
with the equivalent 

Y 

J- 
x 

z 

FIG. 8. Sample results for a ridged waveguide: (a) dimensions of the waveguide (a:b:d:e =4:2:1:1); 
(b) H, of TEo, wave for c= CC with both ends open; (c) H, of TE,, wave for c/b= 1 with closed back 
end; (d) for comparison, H, of TE,, wave for a rectangular waveguide with closed back end. The dashed 
lines represent negative fields and the vector of field points to the outside of the paper. 
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-EQUIVALENT CIRCUIT 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 I.0 

di’b 

FIG. 9. Comparison of the eigenmode resonance frequencies computed wth OUT method and with 
the equivalent circuit approximation by Pyle 121. fif’ is the ratio of the resonant frequency with the 
rectangular aavcgutde to that with the ridged waveguide. 

circuit approximation, the lowest eigenfrequencies of three ridged waveguides with 
different aspect ratios were computed by both methods. The results are plotted in 
Fig. 9 with apparent agreement. In order to illustrate our 3D analysis of the finite 
waveguide, Fig. SC shows the results for a finite ridged waveguide (c = 6), and 
Fig. 86 shows the results for a rectangular waveguide without the ridge. Both 
waveguides are closed by a metallic wall at the back end. The resonance frequency 
for the finite-length waveguide is reduced by only 13% due to the ridged effect. 
From Fig. 9, we find that the resonance frequency reduction is 28% for the 
corresponding infinitely long waveguides. 

We also use this example to discuss the correlation of convergence and the 
relaxation parameters. m and /L For this purpose, two ridged waveguides with 
different aspect ratios (one infinitely long and the other with a finite length) have 
been used to study the convergence. The parameters for convergence are illustrated 
in Table I. For the infinitely long ridged waveguide, the result shows that 
convergence is speeded up with larger SI and j if we keep the other parameters 
constant. In the case of the finite-length waveguide, closed only at one end with a 
Neumann boundary condition at the other end, the result shows that the code 
converges only at a particular parameter range. If the finite-length ridged waveguide 
is closed on both ends, then convergence is readily achieved for 0,05 < fi d 1..7. 
0.05 < CI 6 1. 

The third example of the analysis considered here is the cavity illustrated in Fig. 
10a. This cavity is similar to the cavity antenna that has been proposed for the 
ICRH experiment in Doublet III-D [14]. Experiments on it are proceeding at the 
RFTF. Viewed from the side, the cavity is L-shaped. A vacuum cylinder (current 
strap), where the current flow enters the cavity, is located in the center of the ver- 
tical part of the L and is attached to a capacitor plate near the bottom of the k, 
where the current flows back. 
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TABLE I 

The Parameters for Convergence for a Ridged Waveguide” 

Aspect ratio 
Minor 

iterations B 
Major 

u iterations 

a=I,b=l,c=m 

a=?,b=l,c=l 
(one end closed) 

45 1.0 1.0 64 
0.9 63 
0.8 72 
0.5 > 100 

15 1.0 0.8 > 100 
1.2 > 100 
1.5 69 
1.7 34 

15 1.0 1.0 120 
0.7 80 
0.5 > 120 

0 The number of nodes used here is 20 x 18 x 10. 

FIG. 10. Sample results for a complicated cavity: (a) structure of the cavity; (b) top view of /El field; 
(c) side view of IEl field. 
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FIG. 11. Schematic of typical RFQ linear accelerator 

In our algorithm, the mesh points are located on cross-section planes; we cut as 
many of these planes as desired in one direction (the third direction). In this exam- 
ple, we examine the dependence of the results on the orientation of the mesh points. 
Figures lob and 1Oc are cutaway views of the cavity in Fig. 1Oa that show contour 
plots of the electric field structure inside the cavity for the fundamental resonant 
mode. Figure 10b shows the results of a calculation in which the mesh points were 
set on planes cut parallel to the top of the cavity; these planes are rectangular with 
a circular hole (the vacuum cylinder). In Fig. lOc, the mesh points were set on 
planes cut parallel to the side of the cavity; these planes are L-shaped. The planes in 
Figs. lob and c that are labeled “same plane” represent the outside surface of the 
cavity above the capacitor. It is easy to see that the two contour plots have the 
same pattern. The eigenfrequencies of both cases are identical to within 3%. This 
result proves that the subject analysis is independent of boundary data orientation. 

FIG. 12. Cross section of RFQ linear accelerator used in this example. 
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FIG. 13. Contour plots of E, at different cross sections through the accelerator. 

For our final example, we apply our method to a radio-frequency quadrupole 
(RFQ) linear accelerator [ 151, shown in Figs. 11 and 12. The structure is excited so 
that the top and bottom vane tips are of one polarity, while the side vane tips are of 
the opposite polarity. The vane surfaces have considerable electric potential. There 
are gaps between the end plates and the vanes. Figure 13 is a series of contour plots 
of E., at different cross sections through the accelerator. The plots show the trans- 
ition between modes resulting from the 3D effect. The TE,r, mode is dominant at 
the end plane. and the TE,,, mode is dominant at the vanes. 

V. SUMMARY 

We have developed a 3D analysis that can deduce the resonance frequencies and 
the wave fields for a cavity antenna of arbitrary shape by using the finite difference 
method with an SOR convergence scheme. This analysis has been carefully tested 
for various cavities. The results are in good agreement with other theoretical 
analyses. 
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APPENDIX A. THE COEFFICIENTS OF C 

From the finite difference approach (Taylor’s theorem), we have 

d’H,* - 2 Hx,h, + HA, -&Ah, +&I 
7- dx- h,h,(h, +h,) Ax’ ’ 

(A-lb) 

dH,, 
-rz 

H,,h;- H,,h- H,,(k;-hi) 

ii], h:h,(h2 + h,) Ay * 

~2fL _ 7 Hxzh, + H,,h2 - H,.,(h, + h4) 
I;i--- h,h,(h, + h,) Ay2 ’ 

~&I 
-- 

H.,jh:- H,,(hi-12:) 
d ,’ h,h,(h,+h,)Az ’ 

S’H,, z 2H,j/16+HxbhS--H.~O(hj+hb) 
1- 

cl,-- h jh,(h, + he) AZ’ ’ 

jA.lcj 

(A.ld) 

(Ale) 

(A.lf) 

where dx, do, and AZ are the uniform mesh intervals in the s, ~5, and z directions, 
respectively, and hj (where j= 1, 2, 3, 4, 5 and 6) is the distance from point 0 
to point j, normalized to Ax, Ay, or dz. Substituting Eq. (A.1 ) into Eq. (4a) arid 
defining 

A= 
1 

hlh3(h, +h,) Ax” 
i.A.2) 

1 
‘=h2h,(h,+ h,) AJ” 

(A.3) 

1 
“=hjh,(h,+h,)Az2’ 

iA.4) 

and 

i= -2. 1 1 
h,h3Ax’+hZh4Ay2 

CA.5) 
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yields 

2~h,H,,+2~11~,H,,+2;lh,H,,+2~h,H,,+2vlz,H,,+2vh,H,,-iH,=O. (A.6) 

Hence, we have 

c, = 2h,l/i, 
cz = &u/L, 
c, = 2h I /l/i, 
c, = 2h$/i, 

C, = 2h, v/i, 

C, = 2hj qt. 

(A.7a) 

(A.7b) 

(A.7c) 

(A.7d) 

(A.7e) 

(A.7f) 

APPENDIX B. THE OBLIQUE BOUNDARY CONDITIONS 

Setting up the oblique Dirichlet boundary condition is as simple as setting up the 
regular Dirichlet boundary condition. However, setting up the oblique Neumann 
boundary condition is quite complicated. The basic concept of the method [12] is 
to create a set of ghost points to achieve dHldn/ = 0 (or dE/dn = 0). Consider the 
four possible oblique boundaries we can have. They are shown in Fig. B.l. For 

FIG. B.l. The four possible oblique boundaries. 
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uniformity, we must rotate the axes -in Figs. B.la. b, c, and d by OC, -go”, - ?80’, 
and -270’, respectively. We characterize these rotation transform matrices as R,,: 

After this procedure, we have the standard oblique boundary shown in Fig. B.2. 
The next step is to rotate the .Y -J’ coordinate by an angle 6’ such that the oblique 
boundary can always be parallel to the y-axis. The matrix. R,, is 

( 

cos 6 -sin 6 
,sin 8 cos e > . 

Two ghost points, points 1’ and 2’ on Fig. B.3, are then created to cancel the 
parallel component field at points 3 and 4. The directions of those ghost vectors are 
determined by the following matrices G. For the case of Fig. B.la. 

G= 

-0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 
0 0 o-1 0 10 0 
1 0000010 

10 L -1 oooooi 

FIG. B.2. The standard oblique boundary. FIG. B.3. Locations of the ghost points. 
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for the case of Fig. B.lb, 
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G= 

for the case of Fig. B.lc, 

1 0 1 0 0 0 0 0 

0 1 0 -1 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 1 0 1 0 

0 0 0 0 o-1 0 1 

-1 0000010 

0 1 0 0 0 0 o-1 

0 0 1 0 1 0 0 0 

0 0 0 1 o-1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

and for the case of Fig. B.ld, 

G= 

-0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

1 0 100000 

d-1 0 1 0 0 0 0 

0 0 0 0 1 0 1 0 

0 0 0 0 0 1 0 -1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

The magnitudes of the ghost vectors are determined by an 8 x 2 matrix, 
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A= 

0 .4, 

Az 0 

0 A2 

A, 0 

0 A, 

Aa 0 
0 A, 

where A,, A,, A,, and .4, are the areas shown in Fig. B.4. 
The last step is to rotate the coordinate system backward into the original system 

by matrices R, L and R,‘. Finally, we obtain the new coefficients for Eq. (51, 

C’ = &,&GA R,’ R,‘. 

when &, and i?, are the 8 x 8 matrices, with the 2 x 2 matrices, R,, and R,, placed 
along the diagonal, respectively, Hence, C’ is an 8 x 2 matrix. The first column of 
elements of C’ will contain the new coefficients of Eq. (5). (The second column 
of elements contains the coefficients for the complex field. ) Equation (5) will be 
rewritten, in general, as 

Hj, = C; H-/i + Ci Hjz + C; H,3 + C; H, + C> His + Cd H,C 

+ C; H,, + C;, Hkl + C:, H,, + C;, H,,, 

wherek=j-t-1 ifj<3andk=,j-lifj33. 

FIG. B.4. Areas used in calculating the magnitudes of the ghost vectors 
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